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Abstract

This paper reflects on the notion of partial ambiguity. Using a framework de-

composing ambiguity into distinct layers of analysis, among which are risk and model

uncertainty, and allowing for different attitudes toward these layers, I show that partial

ambiguity may prove less desirable than full ambiguity, even under ambiguity aversion.

This observation poses difficulties for interpreting the notion of partial ambiguity in

relation to the partial information available to determine the potential compositions of

an ambiguous urn. Two Ellsberg-style thought experiments are described to challenge

the meaning of partial ambiguity further, and an alternative interpretation, based on

a more ambiguous relation, is discussed.

Keywords: Ambiguity, model uncertainty, smooth ambiguity aversion, Ellsberg para-

dox

JEL Classification: D81

∗CNRS, IESEG School of Management, Univ. Lille, UMR 9221–LEM, F-59000 Lille, France; and
Bocconi University, Italy – E-mail address: l.berger@ieseg.fr. This research is supported by a grant from
the French Agence Nationale de la Recherche (ANR-17-CE03-0008-01 INDUCED) and from the European
Research Council (ERC-2013-StG 336703-RISICO). I am grateful to Mohammed Abdellaoui, Ilke Aydogan,
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Ambiguity may be high even where there is ample quantity of information [...]

(Ellsberg, 1961, p. 659)

1 Introduction

Ambiguity is the term that has emerged in the literature since the seminal paper of

Ellsberg (1961) to characterize situations in which the probabilities of uncertain events are

unknown. Ambiguity is present in virtually all real-life situations and plays a significant

role in most economic problems. It is distinct from the notion of risk, which refers to

situations in which probabilities are perfectly known.

In a recent study, Chew, Miao, and Zhong (2017) extended the decision-making prob-

lem originally presented in Ellsberg (1961) by proposing different forms of “partial ambi-

guity”. These authors write (p. 1240):

“As espoused by Knight, the essence of decision making under uncertainty

is partial knowledge that may arise from vague evidence, diverse information,

or conflicting news. Going beyond pure risk and full ambiguity in the original

two-urn paradox, this paper experimentally studies decision making in a richer

domain of uncertainty involving intermediate forms of ambiguity.”

The interpretation giving rise to such a notion of partial ambiguity implicitly relies on the

partial information, or knowledge, available to pin down the potential probability models

describing the stochastic phenomenon of interest: from 1, in the pure risk case, to 101, in

the full ambiguity case, originated from Ellsberg (1961).

In this paper, I reflect on the meaning of partial ambiguity as an intermediate form of

ambiguity. Using a recently developed approach that decomposes ambiguity into distinct

layers of analysis, among which are risk and model uncertainty (Hansen, 2014; Marinacci,

2015; Hansen and Marinacci, 2016), and that allows for distinct layers to be treated differ-

ently, I show that partial ambiguity may be deemed less desirable than full ambiguity to

an ambiguity-averse decision maker (DM).1 This counterintuitive observation challenges

the significance of partial ambiguity.

In line with the risk theory literature (for which the notion of partial risk does not

exist), I argue that partial ambiguity may not be helpful in characterizing more precisely

uncertain situations that are by nature either risky or ambiguous, but hardly admit in-

termediate forms between them (i.e., either the probability distribution is known or it is

unknown). However, if a refinement needs to be made in the classification of different

ambiguous situations, I propose that a natural candidate can characterize an ambiguous

act as whether it is affected more by ambiguity than another. This classification could be

based on the more ambiguous notion proposed by Jewitt and Mukerji (2017). It has the

1Note that, technically, this result coincides with Predictions 1 and 2 in Chew, Miao, and Zhong (2017).
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advantage of mirroring the well-established notion of more risky (Rothschild and Stiglitz,

1970) widely used in the risk theory literature. It furthermore allows for establishing a

partial ordering among ambiguous situations (within a given class of preferences).

2 Ambiguity and the layers of uncertainty

2.1 Ellsberg paradox

Ellsberg (1961) proposed two thought-experiment decision problems, which have been

the primary examples motivating research on ambiguity. One of them, known as the

two-color problem, goes as follows.2

Thought Experiment [Ellsberg, 1961] Imagine that you confront two urns contain-

ing red and black balls, from one of which a ball will be drawn at random. You can choose

the color and the urn on which to bet. With a correct bet, you win $100 (and nothing

happens if your bet is incorrect). You have the following information. The first urn, called

E100, contains 100 red and black balls, but in a ratio entirely unknown to you. The second

urn, called R100, contains exactly 50 red and 50 black balls. On which urn do you prefer

to bet?

The four possible event-contingent payment schemes of the problem are presented in

Table 1. They depend on the color of the ball drawn from one of the urns. Typically,

E100 R100

Red Black Red Black

f $100 $0
g $100 $0
f ′ $0 $100
g′ $0 $100

Table 1: Ellsberg two-color problem

what is observed is that people are indifferent on the color on which to bet: they express

indifference between f and f ′, and between g and g′ (which is noted f ∼ f ′ and g ∼ g′,

respectively); but prefer betting on R100 rather than on E100: they express a preference

for g over f and for g′ over f ′ (noted g � f and g′ � f ′). Such preferences are, however,

incompatible with the existence of subjective probabilities: the ranking f ≺ g would imply

that the probability of drawing a red ball in urn E100 is considered to be less than 0.5

(i.e., less than the probability of drawing a red ball in urn R100), while at the same time

the ranking f ′ ≺ g′ would imply that the probability of drawing a black ball in urn E100

2Note that this thought experiment had already appeared in Keynes (1921).
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is considered to be less than 0.5 (i.e., less than the probability of drawing a black ball

in R100). Overall, this would result in having the probabilities of complementary events

summing up to less than 1, which is inconsistent. As bets f and f ′ involve ambiguity,

whereas bets g and g′ involve risk, these typically observed preferences indicate ambiguity

aversion, that is, a preference for known-probability bets over unknown ones.

2.2 Decomposing ambiguity into layers of uncertainty

Following the works of Hansen (2014); Marinacci (2015); and Hansen and Marinacci

(2016), themselves building on early insights of Arrow (1951), ambiguity can generally

be decomposed into different layers of uncertainty: (i) risk within a model, in which the

uncertainty is about the outcomes of a given (probability) model that specifies fully the

outcome probabilities; (ii) model uncertainty, in which the uncertainty is about which

probability model (among a given set) should be used to assign these probabilities; and

(iii) model misspecification, in which the uncertainty is induced by whether or not the

correct model lies among the set under consideration (Aydogan et al., 2020). While most

uncertain situations in real-life usually encompass the three layers of uncertainty together,

Ellsberg’s (1961) examples are particularly remarkable because they generate ambiguity

using only the layers of type (i) and (ii) (indeed, model misspecification is nonexistent in

Ellsberg’s setup). For example, in the two-color problem described above, the composition

of the urn E100 is necessarily one of the 101 compositions physically possible.3

The main distinction between the layers of risk and model uncertainty is the nature

of the uncertainty they feature. A risk represents an objectively uncertain prospect. It

refers to the physical quantification of uncertainty by means of a probability model (and

as such is sometimes referred to as an instance of physical or aleatory uncertainty). It is

usually referred to as a lottery, represented by the gamble L = (x1, p1; ...;xn, pn) that yields

outcome xi with a well-defined objective probability pi. This probability pi is a measure of

randomness. For example, a risk may be characterized by a specific composition of an urn

from which a ball is randomly drawn. If the balls in the urn can only have two colors (e.g.,

red and black), the risk may further be characterized by the binary lottery xpy, yielding

x with probability p and y otherwise.

The uncertainty about which probability model (or risk) should be considered is not

of the same nature.4 In Ellsberg’s problem, this second layer of uncertainty has an epis-

temic nature, as no objective probabilities may be assigned to the possible compositions of

the urn. The prospect determining the correct composition of the urn is thus subjectively

uncertain. In theory, a DM can still form a probability measure over the possible urn com-

positions, but these probabilities are necessarily subjective, reflecting the DM’s degree of

3The number of red (black) balls in the urn necessarily belongs to {0, 1, 2, ..., 100}.
4Except in the case of compound risk, in which there is an objective probability distribution on the

possible compositions of the urn. In this case, the compound lottery takes the form (...;Li, pi; ...), yielding
the lottery Li = (...;xij , pij ; ...) with probability pi.
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belief in each possible model. Under this decomposition of ambiguity into different layers,

ambiguity aversion results from a preference for risk over model uncertainty (see Mari-

nacci, 2015; for a theoretical discussion, and Berger and Bosetti, 2020; for experimental

evidence).

3 Ambiguity theories

In this section, I shortly outline different approaches economists have developed to

deal with ambiguity under the two-layer decomposition. I focus on two approaches that

adopt a Bayesian perspective in that they quantify the uncertainty within each layer using

a single probability measure.

Consider a finite set S of states of the environment and a set C of consequences.

(Technical details are standard and are omitted here.) Adopting Savage’s (1954) approach,

an act is defined as a choice with state-contingent consequences, that is a mapping a : S →
C. The collection of all acts is denoted by A. It is assumed that the DM has a preference

relation % over acts, a binary relation that describes how she ranks alternatives. In

particular, I write a % b if the DM either strictly prefers act a to act b or is indifferent

between the two. As usual, ∼ denotes indifference and � strict preference. I assmue that

the DM is able, because of her ex ante information, to posit a set of potential models

M describing the likelihoods of the different states. This set of models is taken as a

datum of the decision problem: the DM behaves as if she knows that states are generated

by a probability model m that belongs to the collection M . Each probability model m

therefore describes a given risk and, as such, represents the intrinsic randomness that

states feature. The epistemic uncertainty is about which is the correct model among the

collection M . I write M = {mθ}, indicating that each model is indexed by a parameter

θ. For example, the Ellsberg’s urn E100 has 101 possible compositions, which can be

summarized by M =
{
mθ = θ

100 for θ ∈ {0, 1, ..., 100}
}

.5 The (Savage) decision problem

under uncertainty is fully characterized by the sets of acts, states, consequences, and

models, together with the preference relation, that is, the quintet (A, S, C,M,%).

3.1 Subjective expected utility

Under the benchmark approach of subjective expected utility (SEU), a preference

satisfying Savage’s (1954) axioms is represented by the criterion

USEU (a) =
∑
θ

(∑
s

u(a(s))mθ(s)
)
µ(θ) =

∑
s

u(a(s)) m̄(s).

In these expressions, u is a von Neumann-Morgernstern utility function. It translates

economic consequences, measured in monetary terms, into utility levels, and is known to

5In an abuse of notations, I let the model mp = xpy be fully characterized by the probability p.
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capture risk attitudes. As shown within the bigger parentheses, it is possible, for each

model mθ, to compute the expected payoff of a given act. This expected payoff takes an

expected utility form: it is computed as the weighted sum of utilities obtained from the

consequences in each state of the environment. To address model uncertainty, the DM

has a subjective prior probability distribution µ that quantifies her belief about the true

parameter θ. Thus, µ(θ) is the DM’s subjective belief that mθ is the true model. As the

DM does not know which is the correct model, she considers the expected payoff of each

possible model and aggregates them out by performing a weighted average according to

the relative weights that she associates with each of them (i.e., her prior beliefs µ(θ)). The

first representation hereabove is the two-layer version of SEU that has been axiomatized

by Cerreia-Vioglio et al. (2013). Under this framework, the layers of risk and model

uncertainty are implicitly treated in the same way. The second representation is the

original reduced form of Savage (1954), in which m̄ is the predictive probability induced

by the prior µ: m̄(s) =
∑

θmθ(s) µ(θ) for all states s. In Ellsberg’s experiment, for

example, a bet on the ambiguous urn E100, giving x = 100 if correct and y = 0 otherwise,

yields USEU = 1
101

∑100
θ=0

θ
100u(100) = 1

2u(100), which is exactly the same as a bet on the

risky urn R100.6

3.2 Smooth ambiguity

To accommodate the phenomenon of ambiguity aversion highlighted in Ellsberg (1961),

the theoretical economic literature has followed different perspectives. One of them, known

as the smooth ambiguity approach (Klibanoff et al., 2005, KMM hereinafter), also adopts

a Bayesian perspective by having the two layers of uncertainty quantified by a single

probability measure. However, in contrast with SEU, a distinct treatment is allowed for

the layers of risk and model uncertainty. By letting the function v represent the DM’s

attitude toward model uncertainty, a natural generalization of the SEU criterion emerges

as a version of the smooth ambiguity model of KMM. Under this framework, acts are

ranked according to the criterion

UKMM (a) =
∑
θ

φ
(∑

s

u(a(s))mθ(s)
)
µ(θ).

A stronger aversion to the layer of model uncertainty than to that of risk leads to am-

biguity aversion, modeled by a concave function φ = v ◦ u−1. Under this criterion, a

bet on urn E100 yields UKMM = 1
101

∑100
θ=0 φ

(
θ

100u(100)
)
, and it is easy to show that

UKMM ≤ φ (USEU ) under ambiguity aversion. This interpretation of a non-neutral at-

titude toward ambiguity stems from non-reduction of objectively and subjectively deter-

mined probabilistic judgements (i.e., different confidence in such judgments).

6Under the assumption of uniform prior µ and after normalizing u(0) = 0.

6



3.3 Other approaches

The smooth ambiguity approach allows for viewing ambiguity à la Ellsberg as a two-

stage uncertain prospect, in which the uncertainty in each stage corresponds to a distinct

layer. Other approaches also model ambiguity as multiple stages of uncertainty while not

necessarily making a distinction between the layers of risk and model uncertainty (see

Aydogan et al., 2020, for more details). This is for example the case of the approaches

proposed by Segal (1987) (recursive rank dependent utility approach, RRDU) and by Seo

(2009). As these approaches do not distinguish between objectively and subjectively de-

termined probabilistic judgements in the distinct layers, they made no distinction between

compound risk (in which there are two stages of risk) and ambiguity à la Ellsberg (in

which there are a layer of risk and a layer of model uncertainty). Hence, as non-neutral

ambiguity attitudes may result from the violation of reduction of compound lotteries, an

elementary rationality condition, these theories assign to ambiguity attitudes a purely

descriptive status.

4 Partial ambiguity

Chew, Miao, and Zhong (2017) recently proposed the notion of partial ambiguity to

describe the situations “going beyond pure risk and full ambiguity in the original two-urn

paradox” (p. 1240). The “intermediate forms of ambiguity” they propose may be described

using an urn containing 100 red or black balls. Specifically, by letting n ∈ {0, 1, ..., 50},
partial ambiguity may take the form of:

• Interval Ambiguity, when the number of red (or black) balls is in In = [50−n; 50+n];

• Disjoint Ambiguity, when the number of red (or black) balls is in Dn = [0;n]∪ [100−
n; 100]; and

• Two-point Ambiguity, when the number of red (or black) balls is in Tn = {50− n, 50 + n}.

By letting n vary between 0 and 50, these situations span the space of possible urn com-

positions between the risky urn R100 (e.g., in the case I0 = T0) in which there is no

ambiguity, and Ellsberg’s ambiguous urn E100 (e.g., in the case I50 = D0), which is

coined “full ambiguity” (Chew, Miao, and Zhong, 2017, p. 1240). Table 2 presents the

sets M of possible models (or urn compositions) induced by these three forms of partial

ambiguity, for the cases n = 0, n = 25, and n = 50.

To understand why these situations may be seen as involving partial forms of ambiguity,

different interpretations may be considered.
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Table 2: Sets of models in the partial ambiguity situations

Types of
n

partial ambiguity 0 25 50

In

{
50
100

} {
25
100 ,

26
100 , ...,

75
100

} {
0

100 ,
1

100 , ...,
100
100

}
(1) (51) (101)

Dn

{
0

100 ,
100
100

} {
0

100 , ...,
25
100

}
∪
{

75
100 , ...,

100
100

} {
0

100 ,
1

100 , ...,
100
100

}
(2) (52) (101)

Tn

{
50
100

} {
25
100 ,

75
100

} {
0

100 ,
100
100

}
(1) (2) (2)

Note: Number of possible models in parenthesis (|M |)

4.1 Numbers of potential models

The first, natural, way to interpret these situations derives from the number of possible

compositions an ambiguous urn may entail. From Table 2, we can observe that:7

Observation 1 The number of potential models, noted |M |, physically compatible with

each form of partial ambiguity is increasing in n (strictly increasing in the cases of In and

Dn, and weakly increasing –first increasing, then constant– in the case of Tn).

More specifically, the number of possible models lies between 1, when there is no ambiguity

and 101, when there is full ambiguity. Under this interpretation, what makes a situation

of partial ambiguity thus corresponds to lying between these boundaries: |M | ∈ (1, 101).

4.2 Information and its structure

Amount of information The partial ambiguity situations can also be analyzed in terms

of the amount of information they carry. For example, in the case of interval ambiguity,

the situations lie between one in which you know the color of each individual ball in the

urn (in the no ambiguity situation, I0) and a situation in which you do not know the color

of any of the balls (in the full ambiguity situation, I50). More generally, the information

available in the different forms of partial ambiguity can be summarized as follows:

• In situations In, it is known that the urn is composed of at least (50− n) red balls,

and at least (50− n) black balls,

• In situations Dn, it is known that at least (100− n) balls in the urn have the same

color,

7Remark that an analogous observation is present in Chew, Miao, and Zhong (2017) p. 1241.
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• In situations Tn, it is known that there are exactly either (50 − n) or (50 + n) red

(or black) balls in the urn.

We can thus observe the following.

Observation 2 The amount of information available, within each form of partial am-

biguity, is decreasing in n (strictly decreasing in the cases of In and Dn, and weakly

decreasing –first decreasing, then constant– in the case of Tn).

Note that this interpretation, in terms of the amount of information, has sometimes

been related to the one in terms of the numbers of potential models presented before. This

is, for example, the case in the work of Einhorn and Hogarth (1985, p. 435), who wrote

“Thus, ambiguity results from the uncertainty associated with specifying which of a set

of distributions is appropriate in a given situation. Moreover, the amount of ambiguity

is an increasing function of the number of distributions that are not ruled out (or made

implausible) by one’s knowledge of the situation.”

Quality of information Alternatively, the partial ambiguity situations may also be pre-

sented in terms of the quality of information they carry, using their information structure.

The DM’s information about the likelihoods of the different states (and thus the outcome

of the bet) is a priori modeled by a set M . By letting S = {r, b} be the state space, in

which the ball drawn from the urn is either red (r) or black (b), the set of models in each

uncertain situation can be expressed as M = {m such that P (r) ∈ I} . In this expression,

P (r) is the probability that the ball drawn is red, and I ⊆ [0, 1] is a set-theoretic modeling

of information. It represents the available information characterizing the chances to make

a correct bet. In urn E100 for example, I =
{

0
100 ,

1
100 , ...,

100
100

}
. Assuming that the DM

has information about M , her acts needs to be measurable with respect to M . The set of

models can then be partially ordered by the “finer than” and the “coarser than” relations:

Definition. If M ’ and M are such that I ′ is a subset of I, then M ′ is said to be finer

than M , and M is said to be coarser than M ′.

In words, this means that better information regarding the structure of ambiguity may

be naturally modeled by a smaller set of potential models. As such, a situation is called

full ambiguity if its associated set of models is maximal as in E100, and is called partial

ambiguity if its associated set of models is finer than in E100. We can then observe the

following.

Observation 3

• In situations In and Dn, the set of models becomes coarser as n increases,

• The use of set theory remains silent on the ranking of situations under Tn.
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Regarding the second point, remark that the use of set theory does not enable us to

distinguish T25 from T50, whose associated sets of models M can be ranked by neither the

finer nor the coarser relation.

5 Challenges to partial ambiguity

Rather than characterizing the notion of partial ambiguity in relation to the partial in-

formation available and the associated number of possible models, an alternative approach

is to focus on how these situations are considered by individuals. Using the smooth ambi-

guity model discussed in Section 3, and following a simple stochastic dominance argument

à la Rothschild and Stiglitz (1970), which has been widely used in economics, we can

observe that, under a standard symmetry condition on the prior µ, we have

Proposition 1.

• In situations In and Tn, a smooth ambiguity-averse DM always strictly prefers a

situation with a lower n,

• In situations Dn, a smooth ambiguity-averse DM always strictly prefers a situation

with a higher n.

The intuition behind these results is simple. Under the smooth ambiguity model, ambi-

guity aversion can be interpreted as an aversion to mean preserving spreads (MPS) in the

space of expected utilities induced by different urn compositions. It is then easy to see that,

under a specific, but widely accepted, symmetry condition on the subjective probabilities

associated with each model,8 a MPS pattern emerges as n increases for In and Tn, and

as n decreases for Dn. In line with a hedging motive against extreme compositions, such

MPSs of the possible expected utilities are disliked by ambiguity-averse DMs. Remark

also that, in the case of In, Proposition 1 encompasses the standard result of Ellsberg

(1961) that the risky urn R100 is preferred to the ambiguous urn E100 under ambiguity

aversion, while in the case of Dn, a thought-provoking result arises from comparing partial

ambiguity (Dn with n < 50) with full ambiguity (D50).

Corollary 1. In situations Dn, a smooth ambiguity-averse DM always strictly prefers

full ambiguity to partial ambiguity.

8As noted by Chew et al. (2017), uniform, binomial, geometric, and U-shaped priors are all sufficient,
because they (1) are symmetric and (2) imply simple spreads as n increases (in the case of In and Tn) or
decreases (in the case of Dn). These two properties together are sufficient to guarantee the MPS condition.
Remark that these conditions on the prior are less demanding than they appear at first glance. The
symmetry in the prior distribution stems from the indifference between betting on a red or black ball.
In the same vein, a uniform distribution ensures the same treatment for all compositions of the urn that
are physically possible, and a binomial distribution results from associating the same subjective belief to
each individual ball being red or black. All these arguments may be justified on the grounds of a general
symmetry of information argument: given the information available, there is a priori no reason to believe
that one event deserves more weight than another. The prior measure therefore reflects this symmetry, in
accordance with the Principle of Insufficient Reason.
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Considering Proposition 1 together with Observations 2 and 3 may thus be seen as

challenging the significance of the notion of partial ambiguity. In particular, it implies that

more information may either increase (in situations In) or decrease (in Dn) utility under

ambiguity aversion. Similarly, based on the quality of the partial information available, a

finer set of models does not necessarily increase the utility of a bet. As a consequence, an

ambiguity-averse DM may be better off (1) when the information provided makes the set

of models finer (e.g., in the case of In), (2) when it makes the set of models coarser (e.g.,

in the case of Dn), or (3) when it does not make the set of models finer nor coarser (e.g.,

in the case of Tn). Said differently, the value of information regarding the composition of

the urn is not necessarily positive.9

This result may not be intuitive at first glance. In the case of In, it seems relatively

straightforward that, starting from Ellsberg urn E100, in which nothing is known, and

being told that, out of the 100 balls present in the urn, at least (50− n) of them are red

and at least (50− n) are black (e.g. going from I50 to I25), increases the utility of the bet.

This information indeed enables the DM to disregard more extreme compositions of the

urn. However, in the case of Dn, starting from Ellsberg urn E100 and being told that at

least (100− n) balls in the urn have the same color (e.g., going from D50 to Dn) decreases

the utility of the bet under smooth ambiguity aversion. Having more information (and

thus being able to restrict the set of potential models) in this case is therefore not valuable.

Ultimately, what matters for decision-making is the quality, rather than the quantity,

of information. As noted by Ellsberg (1961, p. 659), “ambiguity may be high even where

there is ample quantity of information, where there are questions of reliability and relevance

of information, and particularly where there is conflicting opinion and evidence.”

In what follows, we propose two thought experiments that further challenge the notion

of partial ambiguity. First, consider the situation D0 = T50, which is characterized by

the set of models M =
{

0
100 ,

100
100

}
. As discussed earlier, it might be argued that, in

this situation, partial information is available (i.e., the 100 balls have all the same color)

compared with the urn E100, for which there is no information. However, does that

necessarily imply that such a situation is of partial ambiguity as opposed to the full

ambiguity situation E100? Here is an alternative way to present the problem.

9The value of information may for example be defined as the amount of money that a DM would be
willing to pay for information about the composition of the urn (i.e. for a finer set M ′) before making a
decision. While in general, information is seen as a way to reduce uncertainty –which has thus a positive
economic value– it is worth noting that, in some contexts, information may also increase uncertainty, so
that individuals may be inclined to avoid it. This is the case in the example provided above, as well as in the
context of updating under ambiguity. Indeed, a key concept known as “dilation” of sets of priors, familiar
to common models of updating under ambiguity, is that information may increase relevant ambiguity, and
thus make individuals worse off (Shishkin and Ortoleva, 2020). In that case, the set of relevant priors may
indeed become larger (dilate) after information. In a recent experimental study in this context, Kops and
Pasichnichenko (2020) show that information aversion was significantly correlated with ambiguity aversion.
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Thought Experiment 1 Imagine that you confront two urns containing red and black

balls, from one of which a ball will be drawn at random. You can choose the color and the

urn on which to bet. With a correct bet, you win $100 (and nothing happens if your bet is

incorrect). You have the following information. The first urn, called E100, contains 100

red and black balls, but in a ratio entirely unknown to you. The second urn, called E1,

contains only 1 ball that may be either red or black. On which urn do you prefer to bet?

If the answer to this question is E1, then facing the bet with two models M =
{

0
100 ,

100
100

}
is deemed more desirable than facing the bet with 101 models M =

{
0

100 ,
1

100 , ...,
100
100

}
.

However, there is no reason, in this case, to consider that some (partial) information is

available in E1 compared with E100 (the only difference between the two urns being their

total number of balls). Instead, if, following the simple stochastic dominance argument

exposed above, the answer is E100, then we need to conclude that, in the terminology

proposed by Chew et al. (2017), a preference is expressed for full ambiguity over partial

ambiguity. This counterintuitive result challenges the actual meaning of partial ambiguity.

Second, it is also unclear what is the exact meaning of full ambiguity. To understand why,

consider the following experiment.

Thought Experiment 2 Imagine that you confront two urns containing red and black

balls, from one of which a ball will be drawn at random. You can choose the color and the

urn on which to bet. With a correct bet, you win $100 (and nothing happens if your bet

is incorrect). You have the following information. The first urn, E100, contains 100 red

and black balls, but in a ratio entirely unknown to you. The second urn, E1000, contains

1000 red and black balls, but also in a ratio entirely unknown to you. On which urn do

you prefer to bet?

In this experiment, which of the two urns represents the situation of partial ambiguity, and

which urn represents full ambiguity? Following the terminology adopted in Chew et al.

(2017), E100 is the full ambiguity situation. However, following the line of arguments

exposed above, E100–which entails 101 models–may be seen as encompassing partial in-

formation compared with E1000, which entails 1001 possible models. Indeed, remark that

E100 could be taken as a special case of E1000, in which the DM is told that the 1000

balls are gathered in groups of 10 balls of the same color. Such type of partial information

enables the DM to restrict the set of potential models to take in consideration (in terms

of the sets modeling the information, we indeed have that IE100 is a subset of IE1000).

Does it then imply that E100 is now the partial ambiguity situation and E1000 the full

ambiguity situation? Pushing the reasoning further, how should be called the situation of

an urn containing even more balls (e.g., 10,000)? In the limiting case, wouldn’t the hypo-

thetical ambiguous urn with an infinite number of balls (or Schmeidler’s (1989) coin10) be

10Schmeidler (1989) proposed an example in which an individual is given the choice between betting on
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the only true instance of full ambiguity, as it is the only instance in which I = [0, 1]? All

ambiguous urns containing finite numbers of balls could indeed be viewed as instances of

partial forms of ambiguity lying between such a full ambiguity urn and a risky urn.

6 Discussion

The two thought experiments presented in the previous section illustrate why a clas-

sification of intermediate forms of ambiguity based on the notion of partial ambiguity

may be difficult to adopt. First, as an implicit parallelism is made between the notion of

partial ambiguity and the partial information available, it might be believed that partial

ambiguity conveys a notion of desirability it does not have with respect to the full am-

biguity situation. As argued previously, and contrary to what economic intuition would

suggest, there may well be situations in which providing more information actually de-

creases the desirability of the bet, so that full ambiguity is preferred to partial ambiguity

under ambiguity aversion. Second, as Thought Experiments 1 and 2 indicate, it might not

be consistent to call partial ambiguity a given situation in a specific context in which it is

compared with other ambiguous situations, while the same situation (i.e., a situation with

the same mathematical properties, which is associated with the same set M of possible

models) framed differently may have little, or nothing, to do with partial ambiguity. More

fundamentally, partial ambiguity is a relative notion that is defined in opposition to full

ambiguity, which has itself no clear meaning.

Overall, it is therefore unclear how the notion of partial ambiguity may be helpful in

characterizing further uncertain situations, which typically are either risky (if the prob-

ability distribution is objectively known) or ambiguous (if the probability distribution is

unknown), but hardly admit “partial” forms between them. However, if one thinks that an

extra refinement needs to be made in the classification of different ambiguous situations, a

natural candidate could consist in characterizing an ambiguous act as whether it is more

affected by ambiguity than another. As Ellsberg (1961, p. 660-661) noted, “ambiguity

is a subjective variable, but it should be possible to identify “objectively” some situations

likely to present high ambiguity, by noting situations where available information is scanty

or obviously unreliable or highly conflicting; or where expressed expectations of different

individuals differ widely; or where expressed confidence in estimates tends to be low.”

Such a classification of ambiguous situations could for example be based on the notion

of more ambiguous proposed Jewitt and Mukerji (2017). It allows for establishing a partial

ordering among ambiguous situations (within a given class of preferences), and has the

advantage of mirroring the well established notion of more risky (Rothschild and Stiglitz,

1970), which has been widely used in the risk theory literature (note that in that literature,

the result of a known fair coin coming up Heads or Tails and betting on a coin that has never been tested
and is absolutely unknown. Observe that in the latter case, the set of possible models is both continuous
and bounded between 0 and 1.
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the notion of “partial risk” does not exist). Finally, it allows for dealing with ambiguous

situations for which partial ambiguity remains silent, such as E1 and E1000.

Following Jewitt and Mukerji (2017), the acts of betting on the color of the ball drawn

from the ambiguous urns can be ordered in terms of their degree of ambiguity. Formally

a more ambiguous relation is defined as follows

Definition (Jewitt and Mukerji, 2017) Let P be a class of preferences over a set A.

Assume that a binary relation “more ambiguity averse” is given, which is a strict partial

order. Assume that each %∈ P is related to an ambiguity neutral element of P. Given two

acts f, g ∈ A, f is a more ambiguous act than g if the following conditions are satisfied:

(i) if % ∈ P is ambiguity neutral, then g ∼ f ;

(ii) for all %A, %B ∈ P such that %A is an ambiguity neutral preference and %B is more

(less) ambiguity averse than %A, we have g %B (-B) f .

According to this definition, an act f is more ambiguous than an act g if an ambiguity-

averse DM prefers g to f , but an ambiguity-neutral DM is indifferent between the acts.

It should be clear, however, that this order of more ambiguous arises on the back of a

specific relation on preferences. In the context of the smooth ambiguity model (i.e, when

the preference class partially ordered by a more ambiguity-averse relation is characterized

by a more concave function φ), we can order the partial ambiguity situations presented

in Table 2 exclusively in terms how much they are affected by ambiguity. In line with

Observation 2, we obtain the following results

Proposition 2.

(i) Under In and Tn, the higher the n, the more ambiguous is the situation,

(ii) Under Dn, the lower the n, the more ambiguous is the situation.

In addition, the ambiguous situations encountered in Thought Experiments 1 and 2–for

which partial ambiguity remains silent–can now be classified using the more ambiguous

relation. In particular, by letting EN denote the two-color ambiguous urn with a total

number of balls N in it, we have

Proposition 3. For ambiguous urns EN , a larger N is always preferred under ambiguity

aversion.

Propositions 2 and 3 thus indicate whether the class of smooth ambiguity deems some

acts to be more ambiguous than others. These results are achieved without further restric-

tion on ambiguity and risk attitudes but with a fixed belief (within the families discussed
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previously).11 They make clear that the counterintuitive Corollary 1, i.e. that full ambi-

guity may be more desirable than partial ambiguity, is due to the fact that, for example,

the situation associated with the set M =
{

0
100 ,

100
100

}
is more ambiguous than the one as-

sociated with the set M =
{

0
100 ,

1
100 , ...,

100
100

}
. Such a result is in line with Ellsberg’s quote

above: situations like the one with M =
{

0
100 ,

100
100

}
present a high degree of ambiguity, as

the available information is highly conflicting and leads to expectations that differ widely.

Finally note that, in a recent study, Filiz-Ozbay et al. (2020) investigate experimentally

whether the number of balls in Ellsberg’s two-color urn matters for decisions. Specifically,

they use binary comparisons between urns E2, E10, and E1000 and show that the majority

of subjects (around 60%) prefer urns with larger N . In accordance with Proposition 3,

they further show that this preference for the larger urn is mainly driven by ambiguity

averse subjects.

7 Concluding remarks

The notion of partial ambiguity has been recently proposed to describe intermediate

forms of ambiguous situations, lying between risk and full ambiguity. In this paper, I show

that partial ambiguity, which implicitly relies on the quantity of information provided

about the possible probability models describing the stochastic phenomenon of interest,

may lead to counterintuitive results. Rather, I argue that the quality of the information

is ultimately what determines whether an ambiguous situation is deemed more desirable

than another. Following this idea, I propose a reinterpretation of partial ambiguity in the

light of the more ambiguous relation proposed by Jewitt and Mukerji (2017). I show that,

in the cases in which full ambiguity may surprisingly prove more desirable than partial

ambiguity, it is just because it is less ambiguous.

11As noted by Jewitt and Mukerji (2017, p. 215), “Fixing belief is natural and necessary given that
we are in a framework with subjective belief on states and choice objects are acts, rather than lotteries
involving given distributions on outcomes. In this framework one needs such a restriction even when
working with expected utility (say, to investigate risk orders on acts) since under different beliefs the same
act will induce correspondingly different lotteries over outcomes; an act that is riskier under one belief can
be the opposite under another belief.”
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Appendix

A Proofs

Proof of Proposition 2 Directly follows from Observation 1 and the fact that all partial

ambiguity situations are equivalent under ambiguity neutrality (i.e., under SEU).

Proof of Proposition 3 To prove Proposition 3, we use the graphical illustration pre-

sented in Figure A.1. It depicts the cumulative distribution function (CDF) over the set of

possible probability models when N = {1, 10, 100, 1000}. As the figure shows, the mean is

the same for all distributions. The case E1 corresponds to the situation in which the two

extreme probability models P (r) = 0 and P (r) = 1 both receive a subjective weight 0.5

(symmetry condition). It can then be easily shown that its CDF is second-order stochasti-

cally dominated by any of the CDFs presented in the figure. Assuming ambiguity aversion,

this makes E1 the least preferred option among all the EN . In the same vein, the CDF of

E1000 second-order stochastically dominates (SOSD) all the other CDFs, making the bet

on the urn with 1000 balls the most preferred among the four under ambiguity aversion.

Similarly, when considering the intermediate situation E100, in which each of the 101 pos-

sible probability models P (r) = {0, 0.01, ..., 1} receive an equal weight 1/101, represented

by the step function in Figure A.1, we can show that the distribution of E100 SOSD that

of E10, which itself SOSD that of E1. In the limit, the uniform distribution over all the

possible compositions (in the case of EN with N →∞, represented by the 45-degree line)

SOSD the distribution of any of the EN with a finite N .
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Figure A.1: Cumulative distribution functions of different bets over the set of possible
models describing E1, E10, E100, and E1000
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